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computational tasks.
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evaluate interventions in the form of systems
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Al in Research

Explainability of Large Language Models
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What is (generative) artificial intelligence?

Deep Learning Symbolic Al

Expert Systems

Large Language Models

Machine Learning
Generative

Pretrained
Transfomers Reinforcement Learning

. ChatGPT Transfer Learning

Computational Cognitive Science



Machine Learning 101

Provides computational means to learn models
without being explicitly programmed
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Deep Learning 101

Use neural networks to learn models from data
where features cannot be explicitly expressed

Machine Learning
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Input Feature extraction Classification Output

Deep Learning
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Input Feature extraction + Classification Qutput

Credit: http://blog thinkwik.com/insights-of-




Deep Learning 101

Use neural networks to learn models from data
where features cannot be explicitly expressed
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Large Language Models / Generative Pretrained Transformers
Or: How does ChatGPT work?

Generative Pretraining (self-supervised)
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Supervised fine-tuning (InstructGPT)

Chat History

(Conversations
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chatbot and
human user)
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Reinforcement Learning with Human Feedback
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Reasoning in Large Language Models
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Excursion: Creativity

Can Al be creative?

My answer in 2019: No
My answer in 2023: Not sure
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JKiinstliche

Intelligenz ist
nicht kreativ®

Was schlaue Algorithmen nicht kénnen.

Und warum sie auch von unseren
schwachsten Eigenschaften lernen.

IRIS BURTSCHER

Der &sterreichische Wissenschatter
Jurgen Clto (29) forscht am Massa-
chusetts Institute of Technology
(MIT) in Boston Uber kiinstliche In-
telligenz (KI) und kooperiert dort
auch mit US-Konzernen wie Face-
book, IBM oder Boeing.

SN: Wer ist schlauer, ein zwei-
Jahriges Kind oder eine kiinst-
liche Intelligenz? :
Ein zweijahriges Kind. Weil ¢5 viel
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etwa von Systemen gelenkt, die im-
mer mehr uber unser Kaufverhal-
ten lernen. Das kann man negativ
oder positiv sehen: Weil man zu
mehr Kiufen verfithrt wird oder
weil man vielleicht bessere Kaufent-
scheldungen trifft.

SN:Dle australische Versicherung
Suncorp hat mehrere Monate
lang parallel zu ihren Sach-
bearbeitern auch den IBM-
Supercomputer Watson die
gleichen Fille bearbeiten
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Context: Advanced Programming Course
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Web Engineering @ TU Wien
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The Role of Al in Advanced Programming Education

How are students using Al tools to solve advanced
programming exercises?

What other information sources are they using?

What is the interaction between Al tools and other
iInformation sources?



Study Demographics

The Role of Al in Advanced Programming Education

Bachelor students in Computer Science and Business Informatics

Prior Programming Experience Prior Al tool experience

Did you have previous experience with Al tools (before the course) to support software

In which context have you already had programming experience before starting this course? )
development (ChatGPT, Copilot, etc.)?

B Ao lworlen

B A otworten

University courses
No experience at all

High school (HTL, HAK, Gymnasium, tc.| : o :
A little bit of experience

rofessional software development or similar] )
[0 B T Mcstly exparienced

Hobby (private projects, open scurce, atc ) A Int af axnerience
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Al tool use throughout the course

For which assignments did you use an Al tool as part of this course?

I Antwvorten




Study Methodology

The Role of Al in Advanced Programming Education

Diary study: Students submit open-ended diaries as they are solving exercises that capture
information source use including Al tools

~150 (unstructured) diaries

Inductive analysis on

sample diaries

.

n

Action Chain Model

(by 4 researchers) Action Chain AN
1
Subsequent discussion of i search | | Docs | | Al toof
results and distillation into 1 1
a commonly agreed model Reflection N
Prompt
Qualitative Analysis —> Quantitative Insights

THE ROLE OF GENERATIVE ARTIFICIAL INTELLIGENCE IN
ADVANCED PROGRAMMING EDUCATION:

A CASE STUDY ON WEB ENGINEERIN

G
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TU Wien

Austria

A PREPRINT
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/ researchers analyze all diaries using
gualitative analysis methods and distill it
into our action chain model




Al vs. Non-Al interactions
The Role of Al in Advanced Programming Education

select count(*), at.name from "ActionType" at join "Action"
a on a.'typelId” = at.id group by 2 order by 1 desc,

508 AT Interaction
331 Reflections

299 Documentation
118 Problem
54 Human Interaction

51 Search




What interactions is Al replacing?
The Role of Al in Advanced Programming Education

Al interaction goals (N=508)

Documentation Replacement
Full Implementation

Code Explanation
Directions

Modifying solution/code
Reflnement

Fault Localization

27%
16%
13%
13%
11%
11%
9%

Human interaction goals (N=54)

19°% 10 Documentation Replacement
0% 0 Full Implementation

5% 3 Code Explanation

24% 13 Directions

3% 2 Modifying solution/code
0% 0O Refinement

48% 26 Fault Localization




"It really helps to deeply understand
things. I don’t use You'lube or any
other videos at all anymore because
Al explains it easily and in a fast way"

Student Problems & Reflections
The Role of Al in Advanced Programming Education

Smart Documentation

ChatGPT helped me by explaining code,
Helper in need which I didn't understand. Furthermore it
helped me finding some errors in my code

Reflections on Al use (N=160)

For basic tasks it was really helpful.
Only Basics For tasks where more context was
needed it was not very helpful

count | value
Just doing it yourself might have
"Positive™ 43% been the faster, then correcting
some Al delusions
57 "Neutral" 36%
34 "Negative" 21% The time it takes for me to write

the prompt (maybe even correct
it) and then validate what the Al
wrote... in that time | could
probably write it myself.

If you don't already have an
understanding of what you're coding, it
Validation & Trust will be very hard to tell whether the
problem in your code comes from faulty
code the Al gave you or if you have an
error somewhere else
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Kiinstliche Intelligenz in der Lehre

Was ist KI?

Reasoning und Kreativitdt als Optimierungsproblem

KI in der Fortgeschrittenen
Programmierlehre

Wissensbasis, Vertrauen, Validieren, und Frustration

, @citostyle

Jurgen Cito

Next element
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Optimize parameters to
maximize probability

Smart Documentation

Helper in need

Only Basics

History
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Validation & Trust

Chat History

(Conversations
between ideal
chalbot and
human user)

Next response

THE ROLE OF GENERATIVE ARTIFICIAL INTELLIGENCE IN
ADVANCED PROGRAMMING EDUCATION:
A CASE STUDY ON WEB ENGINEERING
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